Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 84(6): 1049-1061.e8, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38452766

RESUMEN

The Polycomb repressive complex 2 (PRC2) mediates epigenetic maintenance of gene silencing in eukaryotes via methylation of histone H3 at lysine 27 (H3K27). Accessory factors define two distinct subtypes, PRC2.1 and PRC2.2, with different actions and chromatin-targeting mechanisms. The mechanisms orchestrating PRC2 assembly are not fully understood. Here, we report that alternative splicing (AS) of PRC2 core component SUZ12 generates an uncharacterized isoform SUZ12-S, which co-exists with the canonical SUZ12-L isoform in virtually all tissues and developmental stages. SUZ12-S drives PRC2.1 formation and favors PRC2 dimerization. While SUZ12-S is necessary and sufficient for the repression of target genes via promoter-proximal H3K27me3 deposition, SUZ12-L maintains global H3K27 methylation levels. Mouse embryonic stem cells (ESCs) lacking either isoform exit pluripotency more slowly and fail to acquire neuronal cell identity. Our findings reveal a physiological mechanism regulating PRC2 assembly and higher-order interactions in eutherians, with impacts on H3K27 methylation and gene repression.


Asunto(s)
Empalme Alternativo , Complejo Represivo Polycomb 2 , Animales , Ratones , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Isoformas de Proteínas/genética
2.
FEBS J ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451841

RESUMEN

Oxidation of histone H3 at lysine 4 (H3K4ox) is catalyzed by lysyl oxidase homolog 2 (LOXL2). This histone modification is enriched in heterochromatin in triple-negative breast cancer (TNBC) cells and has been linked to the maintenance of compacted chromatin. However, the molecular mechanism underlying this maintenance is still unknown. Here, we show that LOXL2 interacts with RuvB-Like 1 (RUVBL1), RuvB-Like 2 (RUVBL2), Actin-like protein 6A (ACTL6A), and DNA methyltransferase 1associated protein 1 (DMAP1), a complex involved in the incorporation of the histone variant H2A.Z. Our experiments indicate that this interaction and the active form of RUVBL2 are required to maintain LOXL2-dependent chromatin compaction. Genome-wide experiments showed that H2A.Z, RUVBL2, and H3K4ox colocalize in heterochromatin regions. In the absence of LOXL2 or RUVBL2, global levels of the heterochromatin histone mark H3K9me3 were strongly reduced, and the ATAC-seq signal in the H3K9me3 regions was increased. Finally, we observed that the interplay between these series of events is required to maintain H3K4ox-enriched heterochromatin regions, which in turn is key for maintaining the oncogenic properties of the TNBC cell line tested (MDA-MB-231).

3.
Nat Cell Biol ; 25(12): 1833-1847, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37945904

RESUMEN

MAF amplification increases the risk of breast cancer (BCa) metastasis through mechanisms that are still poorly understood yet have important clinical implications. Oestrogen-receptor-positive (ER+) BCa requires oestrogen for both growth and metastasis, albeit by ill-known mechanisms. Here we integrate proteomics, transcriptomics, epigenomics, chromatin accessibility and functional assays from human and syngeneic mouse BCa models to show that MAF directly interacts with oestrogen receptor alpha (ERα), thereby promoting a unique chromatin landscape that favours metastatic spread. We identify metastasis-promoting genes that are de novo licensed following oestrogen exposure in a MAF-dependent manner. The histone demethylase KDM1A is key to the epigenomic remodelling that facilitates the expression of the pro-metastatic MAF/oestrogen-driven gene expression program, and loss of KDM1A activity prevents this metastasis. We have thus determined that the molecular basis underlying MAF/oestrogen-mediated metastasis requires genetic, epigenetic and hormone signals from the systemic environment, which influence the ability of BCa cells to metastasize.


Asunto(s)
Neoplasias de la Mama , Epigénesis Genética , Receptor alfa de Estrógeno , Amplificación de Genes , Proteínas Proto-Oncogénicas c-maf , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Cromatina , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Proteínas Proto-Oncogénicas c-maf/genética
4.
Mol Cell ; 83(15): 2673-2691.e7, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37506700

RESUMEN

Cell cycle progression is linked to transcriptome dynamics and variations in the response of pluripotent cells to differentiation cues, mostly through unknown determinants. Here, we characterized the cell-cycle-associated transcriptome and proteome of mouse embryonic stem cells (mESCs) in naive ground state. We found that the thymine DNA glycosylase (TDG) is a cell-cycle-regulated co-factor of the tumor suppressor p53. Furthermore, TDG and p53 co-bind ESC-specific cis-regulatory elements and thereby control transcription of p53-dependent genes during self-renewal. We determined that the dynamic expression of TDG is required to promote the cell-cycle-associated transcriptional heterogeneity. Moreover, we demonstrated that transient depletion of TDG influences cell fate decisions during the early differentiation of mESCs. Our findings reveal an unanticipated role of TDG in promoting molecular heterogeneity during the cell cycle and highlight the central role of protein dynamics for the temporal control of cell fate during development.


Asunto(s)
Timina ADN Glicosilasa , Proteína p53 Supresora de Tumor , Animales , Ratones , Ciclo Celular/genética , Línea Celular , Regulación de la Expresión Génica , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Nat Aging ; 3(6): 688-704, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37291218

RESUMEN

Skin aging is characterized by structural and functional changes that contribute to age-associated frailty. This probably depends on synergy between alterations in the local niche and stem cell-intrinsic changes, underscored by proinflammatory microenvironments that drive pleotropic changes. The nature of these age-associated inflammatory cues, or how they affect tissue aging, is unknown. Based on single-cell RNA sequencing of the dermal compartment of mouse skin, we show a skew towards an IL-17-expressing phenotype of T helper cells, γδ T cells and innate lymphoid cells in aged skin. Importantly, in vivo blockade of IL-17 signaling during aging reduces the proinflammatory state of the skin, delaying the appearance of age-related traits. Mechanistically, aberrant IL-17 signals through NF-κB in epidermal cells to impair homeostatic functions while promoting an inflammatory state. Our results indicate that aged skin shows signs of chronic inflammation and that increased IL-17 signaling could be targeted to prevent age-associated skin ailments.


Asunto(s)
Interleucina-17 , Envejecimiento de la Piel , Ratones , Animales , Interleucina-17/genética , Inmunidad Innata , Linfocitos , Piel
6.
Methods Mol Biol ; 2655: 91-99, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37212991

RESUMEN

Control of gene expression and the faithful transmission of genetic and epigenetic information rely on chromatin-bound proteins. These include the polycomb group of proteins, which can display a remarkable variability in their composition. Alterations in the chromatin-bound protein compositions are relevant for physiology and human disease. Thus, chromatin-bound proteomic profiling can be instrumental for understanding fundamental cellular processes and for identifying therapeutic targets. Inspired by biochemical strategies for the isolation of proteins on nascent DNA (iPOND) and the very similar DNA-mediated chromatin pull-down (Dm-ChP), we described a method for the identification of Protein on Total DNA (iPOTD) for bulk chromatome profiling. Here, we update our iPOTD method and, in particular, detail the experimental procedure for the isolation of chromatin proteins for mass spectrometry-based proteomic analysis.


Asunto(s)
ADN , Proteómica , Humanos , ADN/química , Cromatina/genética , Replicación del ADN , Genoma
7.
Methods Mol Biol ; 2624: 55-72, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36723809

RESUMEN

The chromatin immunoprecipitation coupled with the next-generation sequencing (ChIP-seq) is a powerful technique that enables to characterize the genomic distribution of chromatin-associated proteins, histone posttranslational modifications, and histone variants. However, in the absence of a reference control for monitoring experimental and biological variations, the standard ChIP-seq scheme is unable to accurately assess changes in the abundance of chromatin targets across different experimental samples. To overcome this limitation, the combination of external spike-in material with the experimental chromatin is offered as an effective solution for quantitative comparison of ChIP-seq data across different conditions. Here, we detail (i) the experimental protocol for preparing quality control spike-in chromatin from Drosophila melanogaster cells and (ii) the computational protocol to compare ChIP-seq samples with spike-in based on the use of the spikChIP software.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Histonas , Animales , Histonas/genética , Histonas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cromatina/genética , Inmunoprecipitación de Cromatina/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos
8.
STAR Protoc ; 4(1): 101948, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36583961

RESUMEN

Here, we present a computational pipeline to obtain quantitative models that characterize the relationship of gene expression with the epigenetic marking at enhancers or promoters in mouse embryonic stem cells. Our protocol consists of (i) generating predictive models of gene expression from epigenetic information (such as histone modification ChIP-seq) at enhancers or promoters and (ii) assessing the performance of these predictive models. This protocol could be applied to other biological scenarios or other types of epigenetic data. For complete details on the use and execution of this protocol, please refer to Gonzalez-Ramirez et al. (2021).1.


Asunto(s)
Histonas , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Ratones , Histonas/metabolismo , Regiones Promotoras Genéticas/genética , Epigénesis Genética , Expresión Génica
11.
Curr Opin Genet Dev ; 75: 101920, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35609423

RESUMEN

t(9;11)-Induced leukemia is present both in children and adults, and depending on age, can cause predominantly acute lymphoblastic (ALL) or acute myeloid leukemia (AML), respectively. In general, in infants, it is characterized by poor (ALL) or intermediate (AML) prognosis, whereas in adults, it is classified as being of intermediate-high risk [15,24,31]. Its hallmark is the chromosomal translocation between chromosomes 9 and 11, leading to the formation of the MLL-AF9 fusion gene. The expressed chimeric protein was shown to be crucial for leukemia progression. MLL-AF9 recruits - among other factors - the super elongation complex (SEC), leading to aberrant activation of target genes [4,5,9,17,24]. The Polycomb group of proteins plays crucial roles in many processes, such as embryogenesis, differentiation, and maintaining cell homeostasis, and recently reports linking it to MLL-AF9 have emerged. This review will focus on its role in t(9;11)-related leukemia, highlighting the possible therapeutic-targeting strategies.


Asunto(s)
Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Adulto , Niño , Humanos , Lactante , Leucemia Mieloide Aguda/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Proteínas del Grupo Polycomb/genética , Translocación Genética/genética
12.
Genes Dev ; 36(7-8): 451-467, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35450883

RESUMEN

Genome organization plays a pivotal role in transcription, but how transcription factors (TFs) rewire the structure of the genome to initiate and maintain the programs that lead to oncogenic transformation remains poorly understood. Acute promyelocytic leukemia (APL) is a fatal subtype of leukemia driven by a chromosomal translocation between the promyelocytic leukemia (PML) and retinoic acid receptor α (RARα) genes. We used primary hematopoietic stem and progenitor cells (HSPCs) and leukemic blasts that express the fusion protein PML-RARα as a paradigm to temporally dissect the dynamic changes in the epigenome, transcriptome, and genome architecture induced during oncogenic transformation. We found that PML-RARα initiates a continuum of topologic alterations, including switches from A to B compartments, transcriptional repression, loss of active histone marks, and gain of repressive histone marks. Our multiomics-integrated analysis identifies Klf4 as an early down-regulated gene in PML-RARα-driven leukemogenesis. Furthermore, we characterized the dynamic alterations in the Klf4 cis-regulatory network during APL progression and demonstrated that ectopic Klf4 overexpression can suppress self-renewal and reverse the differentiation block induced by PML-RARα. Our study provides a comprehensive in vivo temporal dissection of the epigenomic and topological reprogramming induced by an oncogenic TF and illustrates how topological architecture can be used to identify new drivers of malignant transformation.


Asunto(s)
Leucemia Promielocítica Aguda , Diferenciación Celular/genética , Transformación Celular Neoplásica/genética , Humanos , Factor 4 Similar a Kruppel , Leucemia Promielocítica Aguda/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción/metabolismo , Tretinoina/farmacología
13.
J Clin Endocrinol Metab ; 107(1): 150-166, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34487152

RESUMEN

CONTEXT: Chronic glucocorticoid (GC) overexposure, resulting from endogenous Cushing's syndrome (CS) or exogenous GC therapy, causes several adverse outcomes, including persistent central fat accumulation associated with a low-grade inflammation. However, no previous multiomics studies in visceral adipose tissue (VAT) from patients exposed to high levels of unsuppressed GC during active CS or after remission are available yet. OBJECTIVE: To determine the persistent VAT transcriptomic alterations and epigenetic fingerprints induced by chronic hypercortisolism. METHODS: We employed a translational approach combining high-throughput data on endogenous CS patients and a reversible CS mouse model. We performed RNA sequencing and chromatin immunoprecipitation sequencing on histone modifications (H3K4me3, H3K27ac, and H3K27me3) to identify persistent transcriptional and epigenetic signatures in VAT produced during active CS and maintained after remission. RESULTS: VAT dysfunction was associated with low-grade proinflammatory status, macrophage infiltration, and extracellular matrix remodeling. Most notably, chronic hypercortisolism caused a persistent circadian rhythm disruption in VAT through core clock genes modulation. Importantly, changes in the levels of 2 histone modifications associated to gene transcriptional activation (H3K4me3 and H3K27ac) correlated with the observed differences in gene expression during active CS and after CS remission. CONCLUSION: We identified for the first time the persistent transcriptional and epigenetic signatures induced by hypercortisolism in VAT, providing a novel integrated view of molecular components driving the long-term VAT impairment associated with CS.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/complicaciones , Síndrome de Cushing/metabolismo , Glucocorticoides/efectos adversos , Grasa Intraabdominal/inmunología , Obesidad Abdominal/genética , Administración Oral , Neoplasias de las Glándulas Suprarrenales/diagnóstico , Neoplasias de las Glándulas Suprarrenales/inmunología , Neoplasias de las Glándulas Suprarrenales/orina , Adulto , Animales , Biopsia , Secuenciación de Inmunoprecipitación de Cromatina , Corticosterona/administración & dosificación , Corticosterona/efectos adversos , Estudios Transversales , Síndrome de Cushing/inmunología , Síndrome de Cushing/patología , Modelos Animales de Enfermedad , Epigenoma/efectos de los fármacos , Epigenoma/inmunología , Femenino , Glucocorticoides/administración & dosificación , Glucocorticoides/metabolismo , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/orina , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/metabolismo , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Masculino , Ratones , Persona de Mediana Edad , Obesidad Abdominal/inmunología , Obesidad Abdominal/patología , RNA-Seq , Transcriptoma/efectos de los fármacos , Transcriptoma/inmunología
14.
Sci Rep ; 11(1): 19545, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599234

RESUMEN

Large-scale sequencing techniques to chart genomes are entirely consolidated. Stable computational methods to perform primary tasks such as quality control, read mapping, peak calling, and counting are likewise available. However, there is a lack of uniform standards for graphical data mining, which is also of central importance. To fill this gap, we developed SeqCode, an open suite of applications that analyzes sequencing data in an elegant but efficient manner. Our software is a portable resource written in ANSI C that can be expected to work for almost all genomes in any computational configuration. Furthermore, we offer a user-friendly front-end web server that integrates SeqCode functions with other graphical analysis tools. Our analysis and visualization toolkit represents a significant improvement in terms of performance and usability as compare to other existing programs. Thus, SeqCode has the potential to become a key multipurpose instrument for high-throughput professional analysis; further, it provides an extremely useful open educational platform for the world-wide scientific community. SeqCode website is hosted at http://ldicrocelab.crg.eu , and the source code is freely distributed at https://github.com/eblancoga/seqcode .


Asunto(s)
Biología Computacional/métodos , Minería de Datos/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Animales , Secuenciación de Inmunoprecipitación de Cromatina , Células Madre Embrionarias , Epigénesis Genética , Evolución Molecular , Regulación de la Expresión Génica , Ratones , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Interfaz Usuario-Computador , Navegador Web
15.
PLoS Comput Biol ; 17(9): e1009368, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34473698

RESUMEN

The ChIP-seq signal of histone modifications at promoters is a good predictor of gene expression in different cellular contexts, but whether this is also true at enhancers is not clear. To address this issue, we develop quantitative models to characterize the relationship of gene expression with histone modifications at enhancers or promoters. We use embryonic stem cells (ESCs), which contain a full spectrum of active and repressed (poised) enhancers, to train predictive models. As many poised enhancers in ESCs switch towards an active state during differentiation, predictive models can also be trained on poised enhancers throughout differentiation and in development. Remarkably, we determine that histone modifications at enhancers, as well as promoters, are predictive of gene expression in ESCs and throughout differentiation and development. Importantly, we demonstrate that their contribution to the predictive models varies depending on their location in enhancers or promoters. Moreover, we use a local regression (LOESS) to normalize sequencing data from different sources, which allows us to apply predictive models trained in a specific cellular context to a different one. We conclude that the relationship between gene expression and histone modifications at enhancers is universal and different from promoters. Our study provides new insight into how histone modifications relate to gene expression based on their location in enhancers or promoters.


Asunto(s)
Elementos de Facilitación Genéticos , Expresión Génica , Código de Histonas/genética , Modelos Genéticos , Regiones Promotoras Genéticas , Animales , Diferenciación Celular/genética , Células Cultivadas , Secuenciación de Inmunoprecipitación de Cromatina/estadística & datos numéricos , Biología Computacional , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Análisis de Regresión
16.
Stem Cell Reports ; 16(9): 2089-2098, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34450038

RESUMEN

Regeneration of skeletal muscle requires resident stem cells called satellite cells. Here, we report that the chromatin remodeler CHD4, a member of the nucleosome remodeling and deacetylase (NuRD) repressive complex, is essential for the expansion and regenerative functions of satellite cells. We show that conditional deletion of the Chd4 gene in satellite cells results in failure to regenerate muscle after injury. This defect is principally associated with increased stem cell plasticity and lineage infidelity during the expansion of satellite cells, caused by de-repression of non-muscle-cell lineage genes in the absence of Chd4. Thus, CHD4 ensures that a transcriptional program that safeguards satellite cell identity during muscle regeneration is maintained. Given the therapeutic potential of muscle stem cells in diverse neuromuscular pathologies, CHD4 constitutes an attractive target for satellite cell-based therapies.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , ADN Helicasas/genética , Músculo Esquelético/fisiología , Regeneración , Células Madre/citología , Células Madre/metabolismo , Animales , Biología Computacional , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Modelos Biológicos , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo
17.
NAR Genom Bioinform ; 3(3): lqab064, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34327329

RESUMEN

In order to evaluate cell- and disease-specific changes in the interacting strength of chromatin targets, ChIP-seq signal across multiple conditions must undergo robust normalization. However, this is not possible using the standard ChIP-seq scheme, which lacks a reference for the control of biological and experimental variabilities. While several studies have recently proposed different solutions to circumvent this problem, substantial analytical differences among methodologies could hamper the experimental reproducibility and quantitative accuracy. Here, we propose a computational method to accurately compare ChIP-seq experiments, with exogenous spike-in chromatin, across samples in a genome-wide manner by using a local regression strategy (spikChIP). In contrast to the previous methodologies, spikChIP reduces the influence of sequencing noise of spike-in material during ChIP-seq normalization, while minimizes the overcorrection of non-occupied genomic regions in the experimental ChIP-seq. We demonstrate the utility of spikChIP with both histone and non-histone chromatin protein, allowing us to monitor for experimental reproducibility and the accurate ChIP-seq comparison of distinct experimental schemes. spikChIP software is available on GitHub (https://github.com/eblancoga/spikChIP).

18.
Front Cell Dev Biol ; 9: 655201, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996816

RESUMEN

Polycomb group (PcG) of proteins are a group of highly conserved epigenetic regulators involved in many biological functions, such as embryonic development, cell proliferation, and adult stem cell determination. PHD finger protein 19 (PHF19) is an associated factor of Polycomb repressor complex 2 (PRC2), often upregulated in human cancers. In particular, myeloid leukemia cell lines show increased levels of PHF19, yet little is known about its function. Here, we have characterized the role of PHF19 in myeloid leukemia cells. We demonstrated that PHF19 depletion decreases cell proliferation and promotes chronic myeloid leukemia (CML) differentiation. Mechanistically, we have shown how PHF19 regulates the proliferation of CML through a direct regulation of the cell cycle inhibitor p21. Furthermore, we observed that MTF2, a PHF19 homolog, partially compensates for PHF19 depletion in a subset of target genes, instructing specific erythroid differentiation. Taken together, our results show that PHF19 is a key transcriptional regulator for cell fate determination and could be a potential therapeutic target for myeloid leukemia treatment.

19.
Nat Commun ; 12(1): 3116, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035253

RESUMEN

Changes in the epigenetic regulation of gene expression have a central role in evolution. Here, we extensively profiled a panel of human, chimpanzee, gorilla, orangutan, and macaque lymphoblastoid cell lines (LCLs), using ChIP-seq for five histone marks, ATAC-seq and RNA-seq, further complemented with whole genome sequencing (WGS) and whole genome bisulfite sequencing (WGBS). We annotated regulatory elements (RE) and integrated chromatin contact maps to define gene regulatory architectures, creating the largest catalog of RE in primates to date. We report that epigenetic conservation and its correlation with sequence conservation in primates depends on the activity state of the regulatory element. Our gene regulatory architectures reveal the coordination of different types of components and highlight the role of promoters and intragenic enhancers (gE) in the regulation of gene expression. We observe that most regulatory changes occur in weakly active gE. Remarkably, novel human-specific gE with weak activities are enriched in human-specific nucleotide changes. These elements appear in genes with signals of positive selection and human acceleration, tissue-specific expression, and particular functional enrichments, suggesting that the regulatory evolution of these genes may have contributed to human adaptation.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Epigenómica/métodos , Linfocitos/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Línea Celular , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Evolución Molecular , Regulación de la Expresión Génica , Humanos , Linfocitos/citología , Primates , RNA-Seq/métodos
20.
Front Cell Dev Biol ; 9: 654344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869213

RESUMEN

Adenosylhomocysteinase (AHCY) is a unique enzyme and one of the most conserved proteins in living organisms. AHCY catalyzes the reversible break of S-adenosylhomocysteine (SAH), the by-product and a potent inhibitor of methyltransferases activity. In mammals, AHCY is the only enzyme capable of performing this reaction. Controlled subcellular localization of AHCY is believed to facilitate local transmethylation reactions, by removing excess of SAH. Accordingly, AHCY is recruited to chromatin during replication and active transcription, correlating with increasing demands for DNA, RNA, and histone methylation. AHCY deletion is embryonic lethal in many organisms (from plants to mammals). In humans, AHCY deficiency is associated with an incurable rare recessive disorder in methionine metabolism. In this review, we focus on the AHCY protein from an evolutionary, biochemical, and functional point of view, and we discuss the most recent, relevant, and controversial contributions to the study of this enzyme.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...